Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Atmos Environ (1994) ; 295: 119559, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2158462

ABSTRACT

Many countries imposed lockdown (LD) to limit the spread of COVID-19, which led to a reduction in the emission of anthropogenic atmospheric pollutants. Several studies have investigated the effects of LD on air quality, mostly in urban settings and criteria pollutants. However, less information is available on background sites, and virtually no information is available on particle number size distribution (PNSD). This study investigated the effect of LD on air quality at an urban background site representing a near coast area in the central Mediterranean. The analysis focused on equivalent black carbon (eBC), particle mass concentrations in different size fractions: PM2.5 (aerodynamic diameter Da < 2.5 µm), PM10 (Da < 10 µm), PM10-2.5 (2.5 < Da < 10 µm); and PNSD in a wide range of diameters (0.01-10 µm). Measurements in 2020 during the national LD in Italy and period immediately after LD (POST-LD period) were compared with those in the corresponding periods from 2015 to 2019. The results showed that LD reduced the frequency and intensity of high-pollution events. Reductions were more relevant during POST-LD than during LD period for all variables, except quasi-ultrafine particles and PM10-2.5. Two events of long-range transport of dust were observed, which need to be identified and removed to determine the effect of LD. The decreases in the quasi-ultrafine particles and eBC concentrations were 20%, and 15-22%, respectively. PM2.5 concentration was reduced by 13-44% whereas PM10-2.5 concentration was unaffected. The concentration of accumulation mode particles followed the behaviour of PM2.5, with reductions of 19-57%. The results obtained could be relevant for future strategies aimed at improving air quality and understanding the processes that influence the number and mass particle size distributions.

2.
Pediatr Allergy Immunol ; 33 Suppl 27: 38-40, 2022 01.
Article in English | MEDLINE | ID: covidwho-1779268

ABSTRACT

Airborne particulate (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS) that are strongly correlated with airway inflammation and asthma. A valid biomarker of airway inflammation is fractionated exhaled nitric oxide (FENO). The oxidative potential of PM2.5 can be evaluated with the dithiothreitol (DTT) dosage, which represents both ROS chemically produced and intracellular ROS of macrophages. This correlates with quality indicators of the internal environment and ventilation strategies such as dilution and removal of airborne contaminants.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Exhalation , Humans , Oxidative Stress , Particulate Matter/toxicity
3.
Sci Total Environ ; 809: 151137, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1475053

ABSTRACT

Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Humans , Pandemics , RNA, Viral , SARS-CoV-2
4.
Environ Sci Pollut Res Int ; 29(10): 13905-13916, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1446199

ABSTRACT

COVID-19 pandemic raised a debate regarding the role of airborne transmission. Information regarding virus-laden aerosol concentrations is still scarce in community indoors and what are the risks for general public and the efficiency of restriction policies. This work investigates, for the first time in Italy, the presence of SARS-CoV-2 RNA in air samples collected in different community indoors (one train station, two food markets, one canteen, one shopping centre, one hair salon, and one pharmacy) in three Italian cities: metropolitan city of Venice (NE of Italy), Bologna (central Italy), and Lecce (SE of Italy). Air samples were collected during the maximum spread of the second wave of pandemic in Italy (November and December 2020). All collected samples tested negative for the presence of SARS-CoV-2, using both real-time RT-PCR and ddPCR, and no significant differences were observed comparing samples taken with and without customers. Modelling average concentrations, using influx of customers' data and local epidemiological information, indicated low values (i.e. < 0.8 copies m-3 when cotton facemasks are used and even lower for surgical facemasks). The results, even if with some limitations, suggest that the restrictive policies enforced could effectively reduce the risk of airborne transmissions in the community indoor investigated, providing that physical distance is respected.


Subject(s)
Air Microbiology , COVID-19 , Pandemics , SARS-CoV-2/isolation & purification , Humans , Italy , RNA, Viral
5.
Environ Res ; 193: 110603, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-965557

ABSTRACT

The spread of SARS-CoV-2 by contact (direct or indirect) is widely accepted, but the relative importance of airborne transmission is still controversial. Probability of outdoor airborne transmission depends on several parameters, still rather uncertain: virus-laden aerosol concentrations, viability and lifetime, minimum dose necessary to transmit the disease. In this work, an estimate of outdoor concentrations in northern Italy (region Lombardia) was performed using a simple box model approach, based on an estimate of respiratory emissions, with a specific focus for the cities of Milan and Bergamo (Italy). In addition, the probability of interaction of virus-laden aerosol with pre-existing particles of different sizes was investigated. Results indicate very low (<1 RNA copy/m3) average outdoor concentrations in public area, excluding crowded zones, even in the worst case scenario and assuming a number of infects up to 25% of population. On average, assuming a number of infects equal to 10% of the population, the time necessary to inspire a quantum (i.e. the dose of airborne droplet nuclei required to cause infection in 63% of susceptible persons) would be 31.5 days in Milan (range 2.7-91 days) and 51.2 days in Bergamo (range 4.4-149 days). Therefore, the probability of airborne transmission due to respiratory aerosol is very low in outdoor conditions, even if it could be more relevant for community indoor environments, in which further studies are necessary to investigate the potential risks. We theoretically examined if atmospheric particles can scavenge virus aerosol, through inertial impact, interception, and Brownian diffusion. The probability was very low. In addition, the probability of coagulation of virus-laden aerosol with pre-existing atmospheric particles resulted negligible for accumulation and coarse mode particles, but virus-laden aerosol could act as sink of ultrafine particles (around 0.01 µm in diameter). However, this will not change significantly the dynamics behaviour of the virus particle or its permanence time in atmosphere.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Cities , Humans , Italy
6.
Pediatr Allergy Immunol ; 31 Suppl 26: 26-28, 2020 11.
Article in English | MEDLINE | ID: covidwho-944772

ABSTRACT

Respiratory allergies are known to affect people all over the world. Environmental factors related to pollution play a significant etiopathogenic role in this regard. Polluting sources are industrial activities and urban traffic, capable of generating various types of pollutants that trigger inflammatory, direct, and indirect damage to tissues, promoting allergic symptoms, even serious ones, and interfering with the pharmacologic response. They are also able to modify pollen, promoting allergic sensitization. Pollution could have played a significant predisposing role in the ongoing morbidity and mortality of SARS-CoV-2.


Subject(s)
Air Pollution/adverse effects , COVID-19/epidemiology , Respiratory Hypersensitivity/etiology , SARS-CoV-2 , Child , Humans , Nitrogen Dioxide/adverse effects , Ozone/adverse effects , Particulate Matter/adverse effects
7.
Non-conventional | WHO COVID | ID: covidwho-47574

ABSTRACT

<p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [...]</p>

SELECTION OF CITATIONS
SEARCH DETAIL